
OP Zuid WP3 November 7, 2016

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

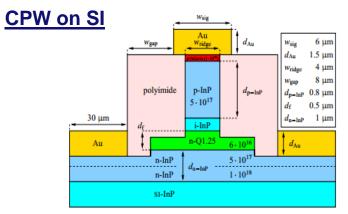
Agenda

• PART I

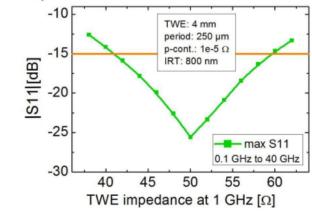
- WP3.1 BB Design
- WP3.3 BB Characterization
- WP3.5 Demonstrator Design (if required)
- WP3.2 PDK Content
- •
- PART II
 - WP3.4 Design Environment

WP 3.1 - BB Design

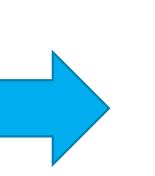
	TABLE 2					M3 N	16 M9	M12	M15 M18	3 M21 M	24 M27	мзо м	133 M36
List of Building Blocks	Design lead	Contact person		Comment	S	Y	ear	1	Ye	ar 2	١	(ea	r 3
High-precision filter	Bright	Ronald											
Tunable, low linewidth laser	Bright	Ronald											
(low-loss passive WG)	Bright	Ronald											
High-speed modulator (iteration 28G, 56G, 128G)	TUe	Weiming	2 types of d	esign, CPW a loaded CP	and capacitively S	itera	tion ⁻	1	iteratio	on 2	iter	ation	3
High-speed RF line	TUe	Weiming		• •	metal routing, 2nd ization + selective		terati	on 1		lterat n 2	io		
Spot-size converter	TUe	Weiming	La	ateral SSC co	oncept								

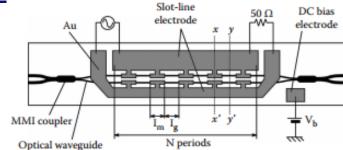


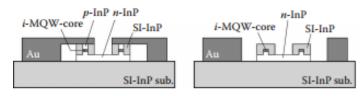
WP 3.1 - BB Design – Processing Requirements


	Design parar	meters					F	Process para	meters (requ	iired)					
			Task 4.1					Task 4.2				Task 4.3			
Building blocks	Figures of merit	Target values	Epi. layer thickness variation	Epi. index variation	QW E-O coefficient	P-cladding doping	resistance		WG width min. (μm)		Side-wall roughness (nm)	Etch depth variation	Polymer thickness (µm)	Polymer thickness variation	Metal thickness (µm)
High-speed	EO bandwidth	20, 40, 80 GHz in stages			(x) (BW Vπ trade-off)		1E-06	3	1	x					> 1 (skin effect)
modulator	Vπ value	~2 V	x (QW design)		(x) (BW Vπ trade-off)										
modulator	Insertion Loss	< 6 dB									x	x			
	Bandwidth (3 dB)	> 40 GHz				x (local Zn)		x					> 5 µm	x	> 1 (skin effect)
RF-line	Impedance	50 Ω											x	x	(x)
	Coupling loss	< 1 dB	x	x					x (0.5 μm)	x	x				
Spot-size converter	Spot size	4x4 um ² or 10x10 um ²													
High-	Wavelength accuracy	< 1 pm	x						x	x					
precision filter	Insertion loss	< 3 dB ?									x				
Tilter	Cross-talk	< -40 dB										x			
Low-	Linewidth	~100, 10, 1 kHz stages				x (local Zn)				x	x				
linewidth,	Tunable range	> 30 nm													
tunable	Output power	> 0 dBm		x			x				x				
	Propagation loss	< 1 dB/cm	x	x		x (local Zn)			x	x	x	x			
WGs															

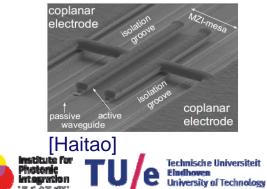
Modulator

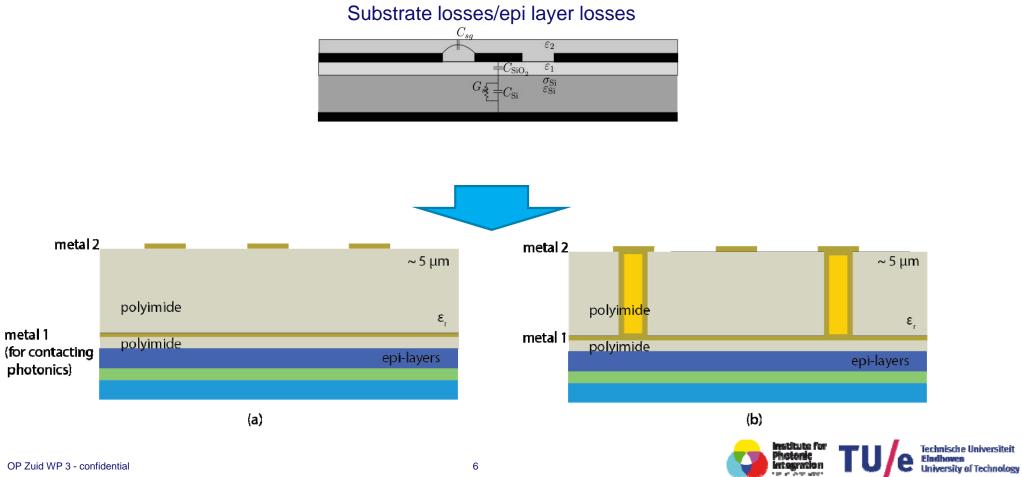

[den Besten]



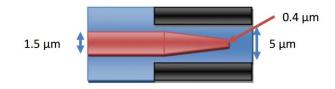


OP Zuid WP 3 - confidential


CL-TWE on SI (b)



xx⁻ cross-section [Akiyama] yy' cross-section



RF Interconnects

OP Zuid WP 3 - confidential

Spot Size Converter

[PARADIGM]

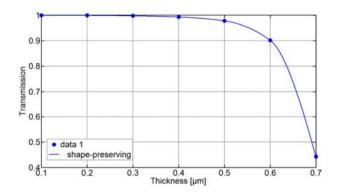
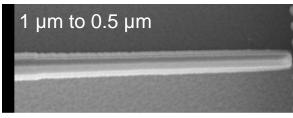



Figure 63: Transmission through the IMW on impact with deep waveguides of different width on top

[PARADIGM]

Using DUV or stepper

[PARADIGM]

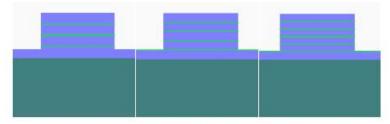


Figure 65: Diluted Waveguide approach for SI-Substrates based on periodically spaced quaternary layers

OP Zuid WP 3 - confidential

WP 3.3 – BB Characterization

WP 3.3	BB Characterization						Veer 1	Veer 2	Veer 2
#	M or R title	Description	items	Responsible	person	involved	Year 1	Year 2	Year 3
R0	Design of Standard MPW BB test cell	Test cell(s) incorporates ALL necessary structures to measure BB FoM and gain statistically relevant data.	several	SMART	Rui	TU/e, Bright			
MO	Report on standard MPW BB cell results	Meausrement results of basic BB from standard MPW test cell	1x	SMART	Rui	TU/e, Bright			
R1	Design of composite BB test cell	test structures for measuring FoM of composite BBs	1x	TU/e	Weiming	Smart, Bright, Effect			
M1	Report on composite test cell results	Meausrement results of composite BB from MPW test cell	1x	TU/e	Weiming	Smart, Bright			

WP 3.3 – BB Characterization

a. SOA

- Spectral gain
- Saturation output power
- Carrier recombination time
- b. EOPM
 - Loss/cm
 - Vpi x L
 - EOBW x L
 - Nonlinearity
- c. Shallow/Deep WG + tapered WG
 - Losses
- d. AWG
 - Insertion loss
 - Channel crosstalk
- e. Photodetector
 - EOBW
 - Dark current
 - Responsivity
 - Max input power

OP Zuid WP 3 - confidential

f. MIRs/MMIs

- Losses
- Reflectivity/Transmittivity
- g. Saturable Absorber
 - Absorption spectra
 - Recovery time
 - Saturation power
- h. Current Injection tuning
 - Efficiency
 - Bandwidth
- i. Electrical Isolation
 - Isolation resistance/L
- j. RF metal
 - Contact resistance to InGaAs, to n-InP
 - Sheet resistance p-InP, n-InP, InGaAs, i-InP, Q-layer, SI substrate, polyimide

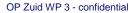
WP3.5 Demonstrator Design (if required)

Transmitter

- 400 GbE?
- Advanced modulation formats
- Parallel transmitter

Sensor/tunable laser/readout

Circuit block diagram


WP3.2 PDK Content

WP 3.2	PDK Content						Year 1	Year 2	Year 3
#	M or R title	Description	items	Responsi ble			Tearr	Teal 2	Teal S
MO	State of the PDK	Report on current state of PDK and list issues to be solved	1x	SMART	Rui	TU/e, Bright			
M1	Definition of basic BB figure of merits	list all relevant FoM to be measured for basic BB, feed-in from survey WP1	1x	TU/e	Weiming	Smart, Bright			
M2	Definition of composite BB FoM	list all relevant FoM to be measured for composite BB, feed- in from survey WP1	several	TU/e	Weiming	Smart, Bright			
R0	Definition of measurement procedures	Measurement procedures of both basic and composite BBs, related to test cell design		TU/e	Weiming	Smart, Bright, Effect			
R1	PDK upgrade with new advanced BB	include the BBs from WP3.1 into PDK with measurement results and figure of merit. Creation of library CBBs	several	SMART	Rui	Bright, Smart, Phoenix			
R2	Compact Models	Descripbe workflow and concept of compact models	1x	Phoenix	Marcel	Bright, Smart, TU/e			
OP Z	Zuid WP 3 - confidential		11			Photon Integra	ten T	Je Eindhe Universit	scre universiten wen sity of Technology

Effort table WP3

Man hours

WP #	Bright	Smart	Phoenix	Effect	Lionix	TU/e	Technobis
WP 3.1	3500	400		500	200	4000	300
WP 3.2	1000	640	1840	500		2000	
WP 3.3		1500		300		1500	
WP 3.4	3200	640	3000			1500	
WP 3.5				1452	200	250	300
sum	7700	3180	4840	2752	400	9250	600

Agenda

• PART I

- WP3.1 BB Design
- WP3.3 BB Characterization
- WP3.5 Demonstrator Design (if required)
- WP3.2 PDK Content
- •
- PART II
 - WP3.4 Design Environment

WP3.4 Design Environment - not finalized yet

WP 3.4	Design Enviroment				
numbe r	M or R title	Description	items	Responsibl e	
MO	Status of design flow	Outline presenting design workflow and procedures, identifying points of improvement	1x	Phoenix	Marcel
M1	Design flow improvement concept	present the concept of the improvements to be worked on	1x	Phoenix	Marcel
R0	Standardized templates for establishing compact models	Detail the concept and requirements for compact models for BBs	1x	Phoenix	Marcel
R1	Advancement of DRC functionality	improving on present DRC capabilities in design flow cycle	1x	Bright	Ronald
R2	Improvement of mask level software capability	Improving tools that work on mask and layout level to facilitate design procedure	1x	Bright	Ronald
M2	Convergence of design enviroment	Achieving closer interplay between design tools and enviroments	1x	Phoenix	Marcel
OP Zuid W	/P 3 - confidential	14		Institute for Photonic Integration	Ue Technische Universit Eindhoven University af Techno