OpenPICs WP3 5th December 2016

Agenda Part I

WP 3.1 BB Design

WP 3.3 BB Characterization

WP 3.5 Demonstrator

WP 3.2 PDK Content

WP 3.1 BB Design

- [Action] Technobis: Tunable laser specifications
- [Action] TU/e: Circulation of documents for BBs, project documents,

list of deliverables/milestones, planning

https://phi.ele.tue.nl/OPZuid/Documents/

login: opzuid pw: atDuegsyu

OPZuid documents - partner area

Filename	Туре	Size	Date Modified
MeetingNotes	<directory></directory>	<directory></directory>	Dec 1 2016 7:07 PM
Milestones	<directory></directory>	<directory></directory>	Dec 1 2016 6:55 PM
Reports	<directory></directory>	<directory></directory>	Nov 25 2016 3:37 PM
WP3_plan.xlsx	Spreadsheet	40.4 KB	Dec 1 2016 6:53 PM
WP4_plan.xlsx	Spreadsheet	22.5 KB	Dec 1 2016 6:53 PM

WP 3.1 BB Design

- [Action] Bright: Circulation of documents for BBs
- [Action] Bright: Include low range tunable laser into planning
- Structures for SP 19 from Bright

Role of Lionix in WP3

WP 3.1 BB Design

WP 3.3 BB Characterization

- [Action] Smart: Provide most up-to-date data on existing FoM measurements.
- 1. List of Building Blocks to be tested
 - a. SOA
 - b. EOPM
 - c. Shallow/Deep WG + tapered versions
 - d. AWG
 - e. Photodetector
 - f. MIRs
 - g. MMIs
 - h. Saturable Absorber
 - i. Current injection tuning
 - j. Electrical Isolation
 - k. RF metal

Generic test structures in openPICs

Different Test Structures

Process Control (PCM)

- CD SEM
 - Etch depth
 - WG width
 - (WG gap)
- Layer stack definition
- PL intensity
- Wafer strain
- Sidewall roughness+angle

Wafer Verfication

- IV and LI curve
 - Cleaved FP laser bar
 - (FP laser with MIR)
- WG loss

During process On wafer

Bar level

- PCM and wafer verification to be tracked per run
- Gain statistical data

Generic test structures in openPICs

Different Test Structures

Building Blocks

- a. SOA
- b. EOPM
- c. Shallow/Deep WG loss
- + tapered versions
- d. AWG
- e. Photodetector
- f. MIRs
- g. MMIs
- h. Saturable Absorber
- i. Current injection tuning
- j. Electrical Isolation
- k. RF metal

- Most after cleaving in bar form + optical alignment
- Basic BBs can be organized with standardized pad placement for automated bar tester
- Targeted introduction of new BB test cell SP 20, march 2017
- Reuse for each MPW after that
- Several iterations of composite BB testing before release as IP block

WP 3.3 BB Characterization

[Action] TU/e + Smart: Structures for SP19

- 1. Metal plating testing
 - DC conductivity
 - P-metal and n-metal connectivity
 - Slope reliability
 - Minimum width test
 - Minimum gap test
 - Differences in p-metal, n-metal, passivation etch metal reliability
- 2. Parameter Extraction
 - Sheet resistance p-InGaAs
 - Sheet resistance p-InP
 - Sheet resistance n-InP
 - PN junction IV curve
 - P-metal contact resistance
 - N-metal contact resistance

- 1. Modulator MQW stack testing
 - Butt-joint reflection test structure
 - Phase-shifter efficiency x L
- 2. Etch Process tests
 - Deep etch slope test
 - Shallow etch slope test
 - Passivation flatness over deep trench

WP 3.5 Demonstrator – tunable laser

For SENSING APPLICATION 1 (LI	DG // PLG)				
Specification	Priority	Requirem	ent		unit
		Min.	nominal	max	
Central wavelength (default)	Must	1535	1550	1565	nm
Modulation range (peak peak)	Must	1	10		pm
	Should		1500		pm
	Could		10	50	nm
Modulation frequency (with nominal	Must	10	100		Hz
peak peak)	Should	1.000	10.000		Hz
	Could		1		MHz
Tuning range	Must	1	2		nm
	Should	5	10		nm
	Could		50	100	nm
Tuning speed	Must	10			pm/sec
	Should		1		nm/sec
	Could		10		nm/sec
Linewidth	Must		100	900	kHz
	Should		40		kHz
	Could		1		kHz
Output power	Must	1			mW
	Should		10		mW
	Could		50		mW

Specification	Priority	Requirement			unit
		Min.	nominal	max	
Central wavelength (default)	Must	1535	1550	1565	nm
Modulation range (peak peak)	Must	0	1		pm
	Should		100		pm
	Could		1.5	50	nm
Modulation frequency (with nominal	Must	1	100		Hz
peak peak)	Should	1.000	10.000		Hz
	Could		1		MHz
Tuning range	Must	1	2		nm
	Should	5	10		
	Could			100	nm
Tuning speed	Must	10			pm/sec
	Should		1		nm/sec
	Could		10		
Linewidth	Must		10	40	kHz
	Should		1	20	kHz
	Could		1		kHz
Output power	Must	1			mVV
	Should		10		mVV
	Could		50		mVV

WP 3.2 PDK Content

[Action] Bright and Phoenix: Circulate "what belongs to PDK".

Agenda Part II

WP 3.4 Design Environment

WP 3.4 Design Environment

- [Action] Bright and Phoenix: Circulate design flow model
- [Action] TU/e: Revised WP 3.4 Plan + Milestones/Deliverables

WP 3.4	Design Enviroment					
number	M or R title	Description	items	Responsible		
MO	Status of design flow	Outline presenting design workflow and procedures, identifying points of improvement	1x	Phoenix	Marcel	Phoenix, Smart, TU/e
M1	Design flow improvement concept	present the concept of the improvements to be worked on	1x	Phoenix	Marcel	Phoenix, Smart, TU/e
RO	Standardized templates for establishing compact models	Detail the concept and requirements for compact models for BBs	1x	Phoenix	Marcel	Phoenix, Smart, Bright
R1	Advancement of DRC functionality	improving on present DRC capabilities in design flow cycle	1x	Bright	Ronald	Phoenix, Smart, TU/e
R2	Improvement of mask level software capability	Improving tools that work on mask and layout level to facilitate design procedure	1x	Bright	Ronald	Phoenix, Smart, TU/e
M2	Convergence of design environment	Achieving closer interplay between design tools and environments	1x	Phoenix	Marcel	TU/e, Smart, Bright

