Last Meeting

Discussion/action points

Nr.	Description	Responsible
1.	DBR Laser test cell on SP22	
	Valentina presents the cell for SP22. It contains wide SOAs in DBR laser	
	structures for high power. It also includes spectral gain measurement structures	
	and extended ring cavity DBR lasers.	
2.	SP 20 MZM chips	
	SP 20 MZM chips on semi-insulting wafer look good in microscope.	
	Characterization of electrical performance will follow.	
3	Pixapp pad layout	
	The layout has not been changed with respect to pad positions. Merely the	
	shape of pads have been changed to be elongated in N-S direction.	
4	WP2 update	
	Roel presents loss and threshold data from recent SP runs. Indication that loss	
	and threshold are brought back to controlled range.	

Building Block Development

MZ Modulator

RF Lines

WP 3.1	BB Design		
WP3.1.M0	Technology and Design Concept	Weiming, Ronald	Dec-16
WP3.1.R0	Analysis and Design	Weiming, Ronald	Jun-17
WP3.1.M1	Mask Design Tape-out I	Weiming, Ronald	Jun-17
WP3.1.R1	BB Results I	Weiming, Ronald	Mar-18
WP3.1.M2	Mask Design Tape-out II	Weiming, Ronald	Sep-18
WP3.1.R2	BB Results II	Weiming, Ronald	Jun-19

WP 3.2	PDK Content		
WP3.2.M0	State of the PDK	Rui	Dec-16
WP3.2.M1	Definition of basic BB figure of merits	Rui	Mar-17
WP3.2.M2	Definition of composite BB FoM	Weiming	Mar-17
WP3.2.R0	Definition of measurement procedures	Weiming	Jun-17
WP3.2.R1	PDK upgrade with new advanced BB	Rui	Mar-18
WP3.2.R2	Compact Models	Rui	Jun-18

Building Block Testing

WP3.3.R0 Design of Stand	ard MPW BB test cell	Weiming	Mar-17
WP3.3.M0 Report on stand	dard MPW BB cell results	Rui	Every MPW
WP3.3.R1 Design of comp	osite BB test cell	Weiming	Sep-17
WP3.3.M1 Report on comp	oosite test cell results	Weiming	Mar-18

Automated testing

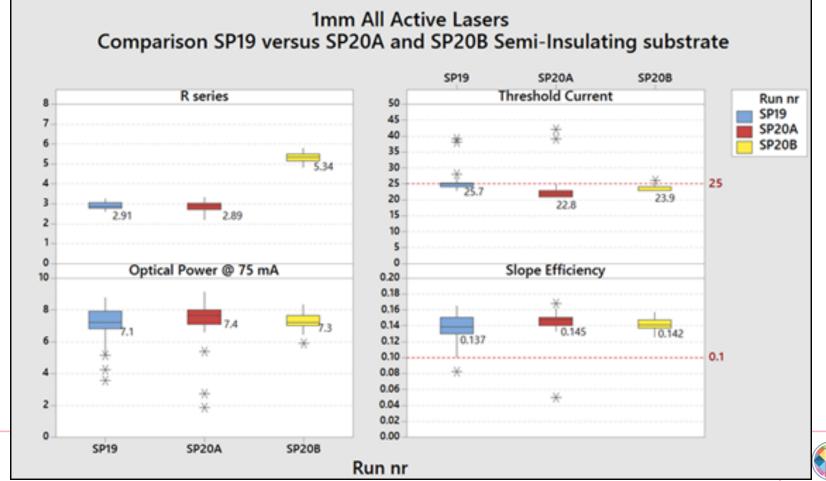
Design Flow

WP3.4.DF.R0	Design Flow document	Marcel	Mar-17	Jan-18 Nov-18
WP3.4.DF.R1	Improvement points	Marcel	Apr-17	Feb-18 Dec-18
WP3.4.DF.M0	Implementation of selected improvement points	Marcel	Jan-18	Nov-18 Aug-19
	Final Design flow Document	Marcel	Aug-19	
Database,	Exectution Flow document	Ronald	May-17	Mar- 18 Jan-19
templates	Implementation of an Execution DB	Ronald	Mar-18	Jan-19 Aug-19
	Final Execution Flow document	Ronald	Aug-19	
	Development of PDAflow template	Marcel	Mar-17	May- 18 Jul-19
PDA FLow	Implementation of first building block	Marcel	Apr-17	
	Full documentation of template	Marcel	Mar-17	May- 18 Jul-19
WP3.4.PDA.M2	Update of Smart and TU/e PDK	Marcel	Jun-18	Dec-18 Aug-19
WP3.4.DRC.R0	DRC requirement report	Marcel	May-17	
WP3.4.DRC.R1	Documentation of DRC capability	Marcel	Aug-17	Aug-18 Jun-19
WP3.4.DRC.M0	DRC Implementation in PDKs	Marcel	Nov-17	Sep-18 Jul-19
WP3.4.DRC.R2	Implementation of new DRC functionality	Marcel	Aug-18	Jun-19

Smart Update

WP20 Delamination Issue:

Root cause has been identified and Process Flow fix has been implemented on running (and future) batches



WP2.2.-M3.1 Generic BB Improvements - Planarisation Sequence on SP20

Achievements: Polyimide Sequence swith implemented going from MPW SP19 to SP20

- ➤ Basic 1mm All Active laser parameters on MPW SP20A are equal to or better than SP19.
- SP20A Threshold Current ±23 mA/mm, Series Resistance ± 3 Ohm and Slope Efficiency of ± 14 %

DBR Laser

WP2.3-M1.1: New Building Block Introduction - DBR laser

Achievements: A tunable DBR laser with excellent performance has been implemented in SP19

- Threshold Current ±20mA
- High Output Power up to ±11mW
- Single Mode operation with SMSR > 50dB

OpenPICs WP3

Agenda

- 1. Last meeting's action points
- 2. Progress and issues to be raised per partner
 - a. TU/e
 - b. Smart Photonics
 - c. Bright Photonics
 - d. Effect Photonics
 - e. Technobis
- 3. Summary

