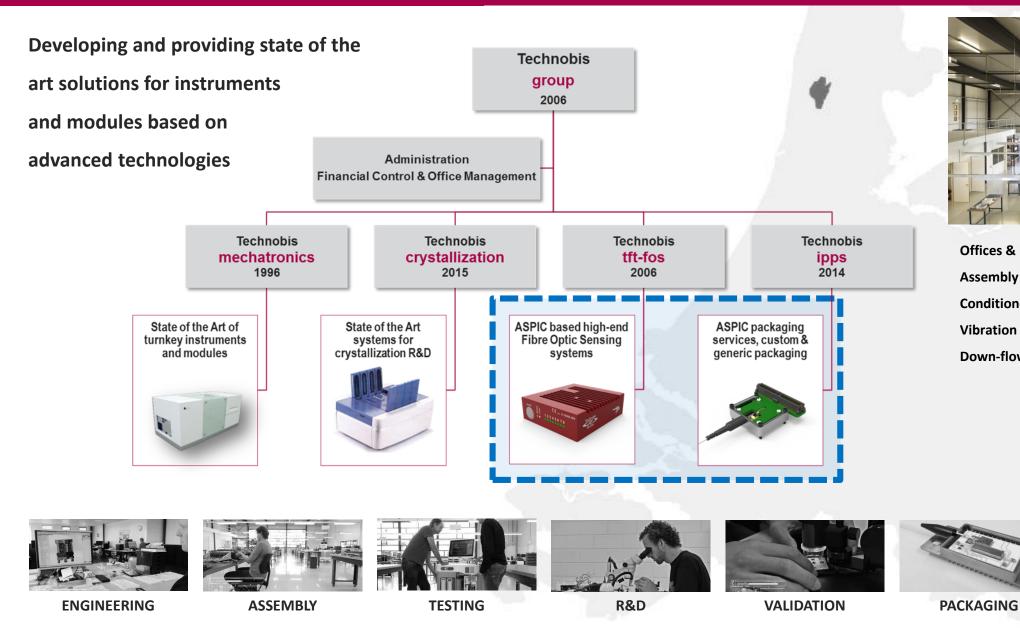
EXTREME fiber sensing

strain sensing thermal mapping pressure sensing

GAL !!

6

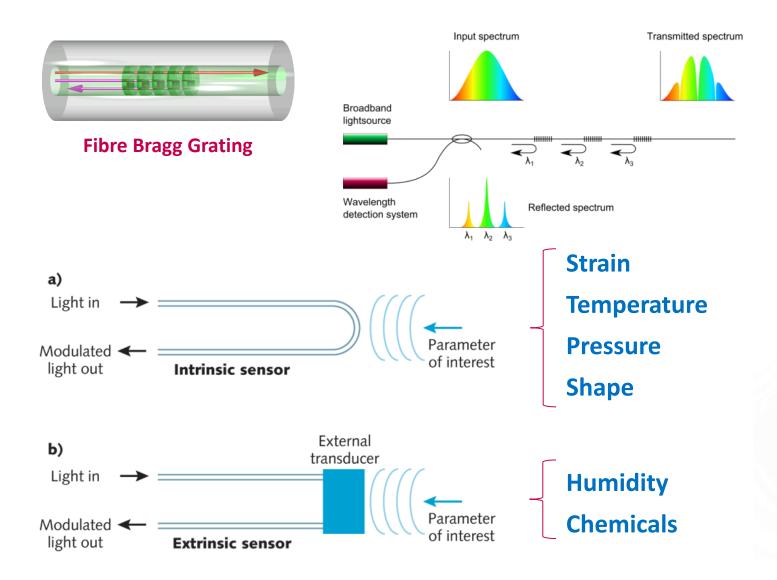
4


PC APC CONC

force sensing shape reconstruction displacement sensing

OpenPICs review meeting 29 august 2017

Technobis Introduction


Technobis

Offices & Meeting Rooms (800 m2) Assembly & testing (700 m2, ESD Compliant) Conditioned labs for prototyping (128 m2) Vibration isolated labs (64 m2) Down-flow lab (28 m2)

INTEGRATION

Fibre Optic Sensing Technology

Why Fibre Optics?

- Totally passive
- Small size & weight
- Chemically inert, intrinsically safe
- Non-conductive, immune to EMI
- Low loss allows remote sensing

High Performance, High Endurance, High Reliability

High-tech Industry

High resolution strain sensing

Thermal Mapping, Vibration Monitoring, Position feedback

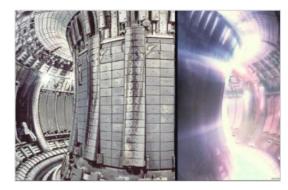
Aerospace

High reliability strain sensing

Structural & Prognostic Health Monitoring, Shape Reconstruction, Thermal Sensing, Load Monitoring, Damage & Impact Detection

Medical

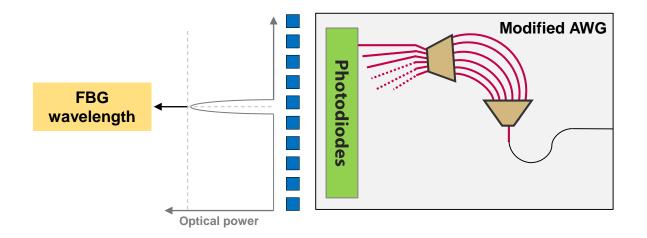
Minimal invasive sensing


Force Sensing, Shape Reconstruction, Pressure & Temperature Sensing, Haptic Feedback

Energy

High endurance sensing

Strain sensing in high temperature and radiated environments, Temperature & Heat Flux Sensing

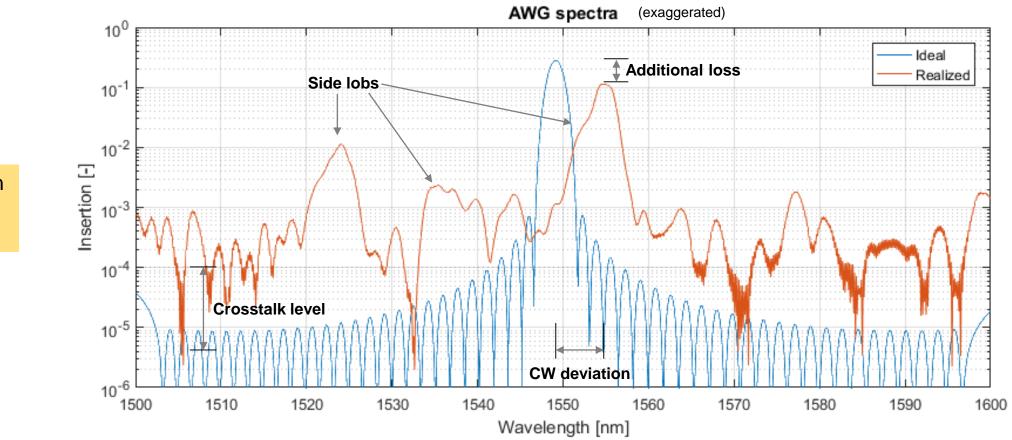


Gator principle

Interrogation based on a modified AWG

- Resolution determined by the amount of optical power
- Performance determined by the AWG

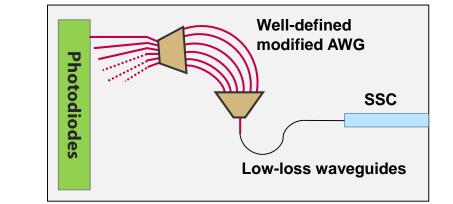
Key parameters


- Insertion loss (fiber to photodiode)
- AWG profile definition (e.g. shape, side-lobs)

Future additions SSC: Spot size converter BIT: Built-In Test QW: Quantum well (1500-1600 nm) TC/SI: Top ground contact/Semi-insulating ... etc.

AWG errors

- From: Waveguide roughness, polarization crosstalk, undesired birefringence, etc.
- Process tolerances!



All have influence on FBG measurement performance!

Proposed chip architecture

First goal: improve standard Gator

- Spotsize Converters (primary)
 - Lower insertion loss over 1500-1600 nm
 - No polarization dependency
 - Improved alignment tolerances
 - First straight SSC, later angled SSC!
- High definition lithography (primary)
 - Clean Gaussian AWG profile
 - Reduced side-lobs >25 dB
 - Polarization dispersion <1 pm

- Low loss waveguides
- High responsive photodiodes
 - Low noise / high shunt-resistance
 - High QE for 1500-1600 nm (> 0.9 A/W)

→ Next generations will also include light sources, etc...

PIC laser requirements (1)

First application:

- < 1 MHz linewidth
- Tunable

|--|

- Must have (at least)
- Should have
- Could have (nice-to-have)
- Won't have (for now)

Specification	Priority	Requirement			unit
		Min.	nominal	max	
Central wavelength (default)	Must	1535	1550	1565	nm
Modulation range (peak peak)	Must	1	10		pm
	Should		1500		pm
	Could		10	50	nm
Modulation frequency (with nominal	Must	10	100		Hz
peak peak)	Should	1.000	10.000		Hz
	Could		1		MHz
Tuning range	Must	1	2		nm
	Should	5	10		nm
	Could		50	100	nm
Tuning speed	Must	10			pm/sec
	Should		1		nm/sec
	Could		10		nm/sec
Linewidth	Must		100	900	kHz
	Should		40		kHz
	Could		1		kHz
Output power	Must	1			mW
	Should		10		mW
	Could		50		mW

PIC laser requirements (2)

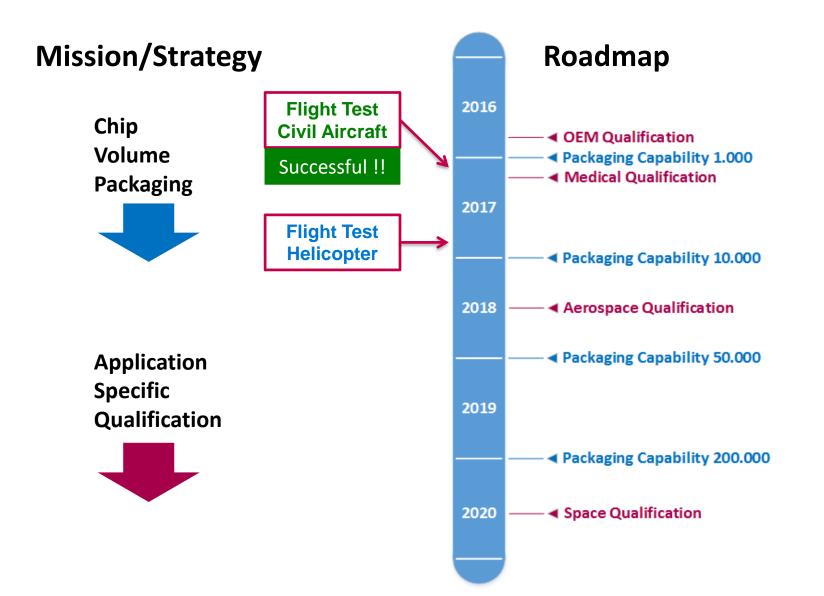
Second application

- Narrow linewidth < 50 kHz
- Not so tunable

MoSCoW:

- Must have (at least)
- Should have
- Could have (nice-to-have)
- Won't have (for now)

Specification	Priority	Requirement			unit
		Min.	nominal	max	
Central wavelength (default)	Must	1535	1550	1565	nm
Modulation range (peak peak)	Must	0	1		pm
	Should		100		pm
	Could		1.5	50	nm
Modulation frequency (with nominal	Must	1	100		Hz
peak peak)	Should	1.000	10.000		Hz
	Could		1		MHz
Tuning range	Must	1	2		nm
	Should	5	10		nm
	Could		50	100	nm
Tuning speed	Must	10			pm/sec
	Should		1		nm/sec
	Could		10		nm/sec
Linewidth	Must		10	40	kHz
	Should		1	20	kHz
	Could		1		kHz
Output power	Must	1			mW
	Should		10		mW
	Could		50		mW



Primary goal for improved building blocks:

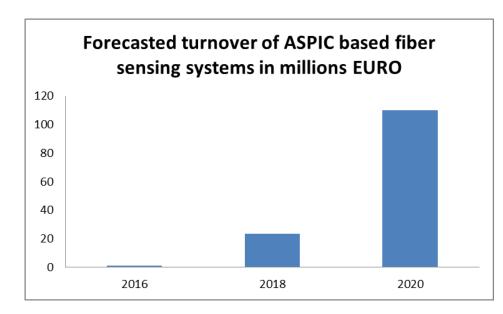
- Lower insertion loss
- Better waveguide definitions

Roadmap

Development

- Market Focus
 - Aeronautics
 - High-Tech
 - Medical
 - Energy

□ Application Focus


- Multi-point Sensing
- Distributed FBG Sensing
- Thermal Mapping
- Shape Sensing
- Damage & Impact Detection
- Smart Structure Concepts
- Technology Focus
 - High Performance (FBG) sensing
 - Cross-sensitivity Strain /Temperature
 - and more

Market forecasts

Most significant markets for Technobis:

- Medical
- Aeronautics
- Energy
- High-Tech

Thank you for your attention

info@technobis.com www.technobis.com

13