OpenPICs WP4: 1st year review

Contributions and planning from TU/e

Longfei Shen 29/08/2017

General planning

TU/e Technische Universiteit Eindhoven University of Technology

5 parallel tasks defined

Tasks	Milestones / Deliverables		Responsible	Due date
T 0. General planning	M 0.1	Specific tasks and milestones defined; WP started	Longfei	Dec-16
	M 0.2	Quantifiable criteria for each milestone defined	Longfei	Mar-17
T 1. Al-MQW based modulators	M 1.1	Designed MQW characterized, shallow-etch modulators demonstrated	Longfei	Dec-17
	M 1.2	Etching and passivation processes developed: ready for MPW validation	Longfei	Jun-18
	M 1.3	Modulator validated in MPW: ready for release	Smart	Mar-19
	D 1.4	Report on process optimization and insights for Albased SOA and 100 Gbps modulators	Longfei	Jun-19
	M 2.1	Zn-diffusion time determined: ready for joint MPW validation	Rene	Jun-17
T 2. Zn- diffusion based A/P integration	M 2.2	Zn-diffusion process validated in joint MPW: ready for transfer to Smart	Rene	Mar-18
	M 2.3	Zn-diffusion process transferred and validated in MPW: ready for release	Smart	Dec-18
	D 2.4	Report on process integration and device characterization	Rene, Longfei	Dec-18

	M 3.1	BCB insulation and metal plating tested: ready for joint MPW validation	Tjibbe	Sep-17
T 3. Thick insulation and RF lines	M 3.2	Process validated in joint MPW (post-processing): ready for transfer	Tjibbe	Mar-18
	M 3.3	Process transferred and validated in MPW: ready for release	Smart	Sep-18
	D 3.4	Report on process integration, insights for 100 Gbps RF lines, and for multi-layer routing	Tjibbe, Longfei	Dec-18
	M 4.1	DUV lithography introduced to MPW	Smart	Jun-17
T 4. DUV lithography and etching optimization	M 4.2	Etching process optimized, ready for transfer to MPW	Longfei	Mar-18
	M 4.3	DUV lithography introduced to Triplex platform	Lionix	Jan-19
	D 4.4	Report on process integration (lithography and etching) in MPW	Smart	Jan-19
	M 5.1	Process developed for AZ and MaN based lithography	Robert	Aug-17
T 5. Stepper lithography integration	M 5.2	Overlay tested and optimized	Robert	Jan-18
	M 5.3	Process introduced to Smart MPW	Smart	Sep-18
	D 5.4	Report on process integration, insights for fabricating new BBs	Robert, Longfei	Dec-18

General planning

Criteria quantified for each specification

Milestone

M 4.2

M 4.3

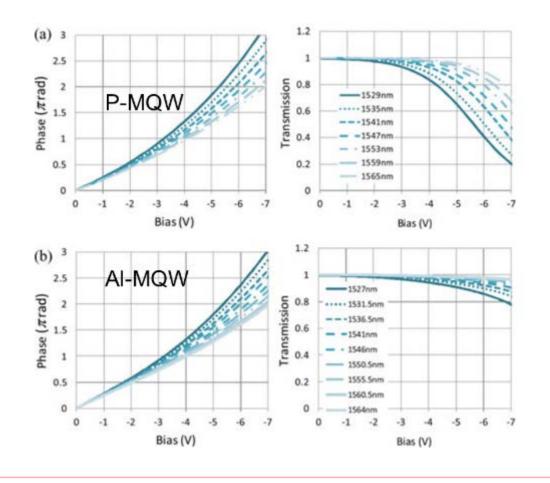
Milestone	Item/spec	Target value/range	Test sample	Characterization	
M 1.1	Designed MQW characterized, shallow-etch modulators demonstrated				
	Reactor upgrade and o	alibration	(5-10) shallow-etch	PL (5 spots)	
	Bandgap MQW	1400 ± 50 nm			
	VπL	< 5 Vmm		CO >E por wafor	
	Insertion loss	< 5 dB	mods in 2 MPW	E-O, >5 per wafer; >50 with auto test	
	Bandwidth	> 20 GHz	runs	>50 With auto test	
M 1.2	Etching and passivation processes developed: ready for MPW validation				
	Etch-stop control	± 50 nm	Deep-etch	Tencor (> 10 spots)	
	Side-wall slope	< 3 °	WGs (>10	CD-SEM; X-SEM	
	Oxidation depth	< 200 nm	wafers for fine	X-SEM	
	Carrier life time	t.b.d.	tuning)	μPL	
M 1.3	Modulator validated i	n MPW: ready for rel	lease		
	Regrowth/butt-joint reflection	<-50 dB		Customized test	
	Bandwidth	> 40 GHz (56 Gbps)	3 iterations of	cells	
	Insertion loss	< 5 dB	MPW	Celis	
	Leakage current	< 1 µA	validation		
	Spec variations in other components	< 10%		Standard test cells	

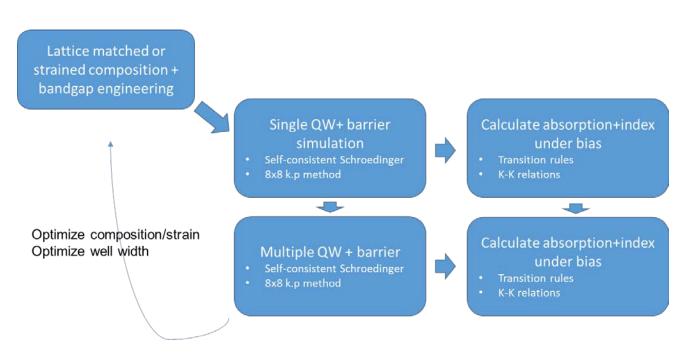
Milestone	Item/spec	Target value/range	Test sample	Characterization	
M 2.1	Zn-diffusion time determined: ready for joint MPW validation				
	Diffusion reproduced	in new reactor	dummy wafers	cv	
	Diffusion rate vs P, T	t.b.d.	dies (epi: InP,	cv	
	Active carrier ratio	> 90%	InGaAs, MPW)	RTA+CV, SIMS	
	Diffusion depth control	± 0.1 μm	MPW wafers (3)	CV (>5 spots)	
M 2.2	Zn-diffusion process validated in joint MPW: ready for transfer to Smart				
	Diffusion in selective areas		d	microscope	
	Lateral diffusion under SiNx mask	<1μm	dummy wafer with markers	X-SEM	
	WG loss	< 0.5 dB/cm	2 iterations of		
	Laser and phase shifter spec deviation w.r.t. typical values	< 10%	3 iterations of MPW validation	Standard test cells	
M 2.3	Zn-diffusion process to	ransferred and valida	ated in MPW: rea	ady for release	
	Same as M 2.2				

	Item/spec	Target value/range	Test sample	Characterization	1		
	DUV lithography intro	duced to MPW			[T		
	Definition of A/P areas	s, gratings, WGs	2-3 iterations		ı [
CD for widths and gaps		determined	of MPW	CD-SEM test cells	ı		
CD optimization	50 nm (gaps in AWG)	validation	CD-SEWI (est cells				
	Etching process optimi	ized, ready for transf	er to MPW		Ī		
	Etch-stop control	± 50 nm	Deep-etch	Tencor (>10 spots)	ı		
	side-wall slope	2-3° (CH4-H2); 0.5- 1° (Cl2)		CD-SEM; X-SEM	-		
	WG loss	< 0.5 dB/cm (undoped wafers)	tuning)	>10 per wafer; >100 with auto test			
	DUV lithography introduced to Triplex platform						
1	Unknown				i		

Milestone	Item/spec	Target value/range	Test sample	Characterization	
M 3.1	BCB insulation and metal plating tested: ready for joint MPW validation				
	BCB thickness;	> 5 um: ± 0.5 um	MPW		
	uniformity		processed	reflectometry	
	BCB edge bead	< 5 mm	wafers (2-3)		
	Metal thickness; uniformity	> 2 μm; ± 0.2 μm	dummy wafers	Tencor	
	Metal-BCB adhesion tested (tape, wire- bonding)		dullilly waters	microscope	
M 3.2	Process validated in joint MPW (post-processing): ready for transfer				
	Resistance from contact to RF line	<1Ω	2 iterations of	Customized test cells	
	RF line bandwidth	> 40 GHz	2 1121 211 211 211		
	Max current	> 10 mA	MPW validation		
	Other components specs deviation w.r.t.	< 10%	validation	Standard test cells	
	typical values	10/0		Standard test tens	
M 3.3	Process transferred and validated in MPW: ready for release				
	Same as M 3.2				

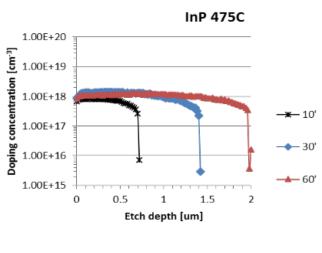
Milestone	Item/spec	Target value/range	Test sample	Characterization	
M 5.1	Process developed for	r AZ and MaN based l	ithography		
	Focus-energy matrix n	neasured		CD-SEM	
	Min widths	2 μm	dummy wafers		
	CD uniformity	< 5%	dullilly waters		
	Negative slope forme	d for metal lift-off		X-SEM	
M 5.2	Overlay tested and op	timized			
	DUV marker visibility	check	d	CD-SEM	
	Alignment accuracy	< 0.3 µm	duminy waters		
M 5.3	Process introduced to Smart MPW				
	Flow and design manu	ıal updated	3 iterations of	CD-SEM test cells	
	Alignment accuracy	< 0.3 μm	MPW		
	New BB designs demo	nstrated with	validation	Customized test	
	improved alignment accuracy		vanuation	cells	

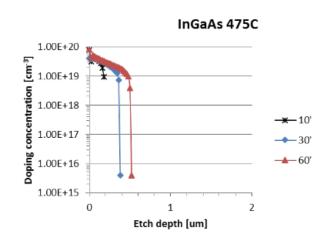


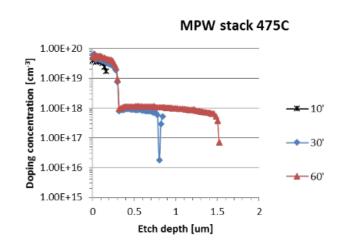


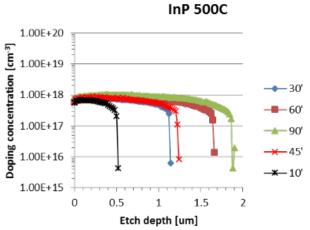
Task 1: Al-MQW based modulators

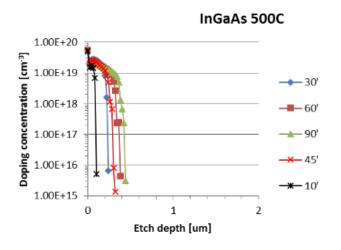
Design stage for Al-MQW (meanwhile experiments for P-MQW)

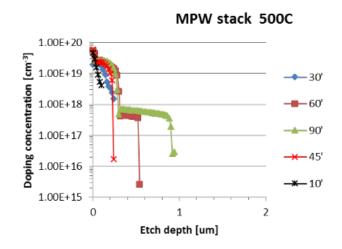


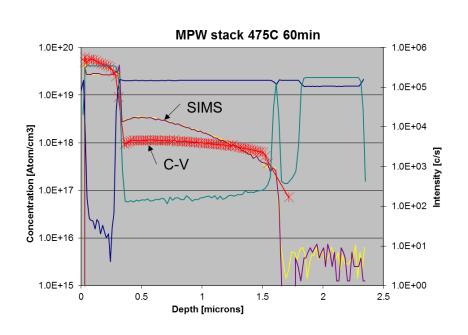


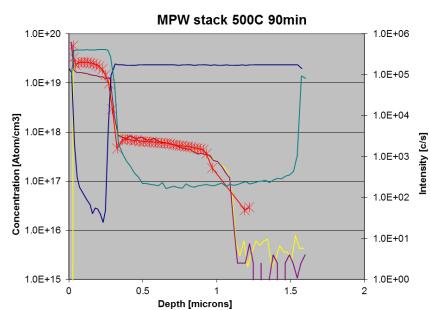

Task 2: Zn-diffusion integration

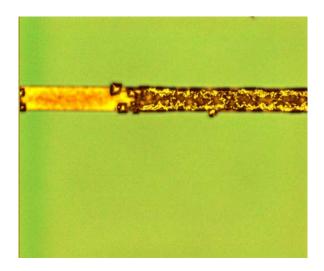


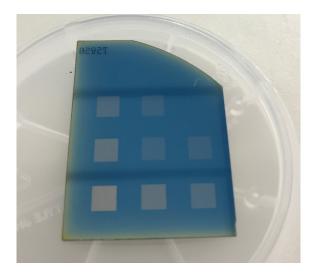

Diffusion calibration and measurements



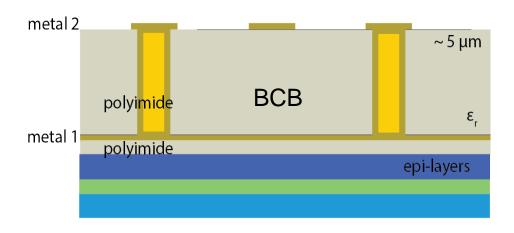


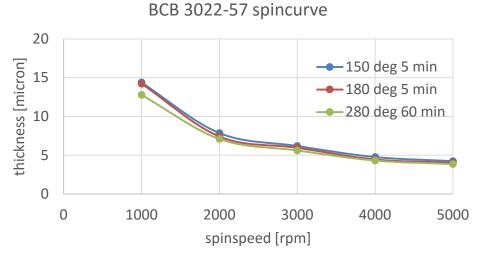


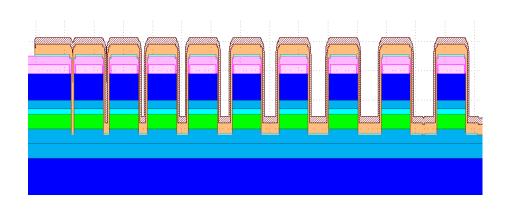

Task 2: Zn-diffusion integration

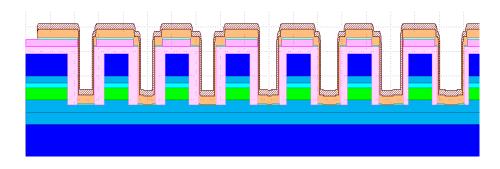

Technische Universiteit
Eindhoven
University of Technology

- Zn interstitials and crystal formation at 475C
- Mask transmission dependent diffusion rate



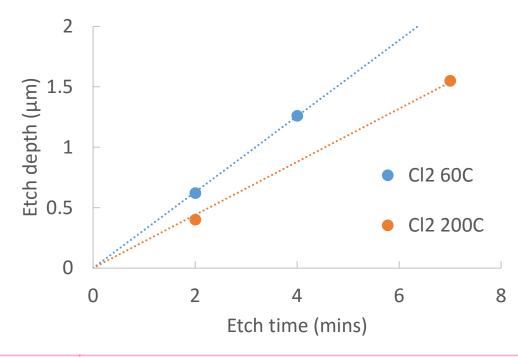



Task 3: Thick insulation and RF lines



Development on BCB done: spin, lithography, reflow, etching, etc

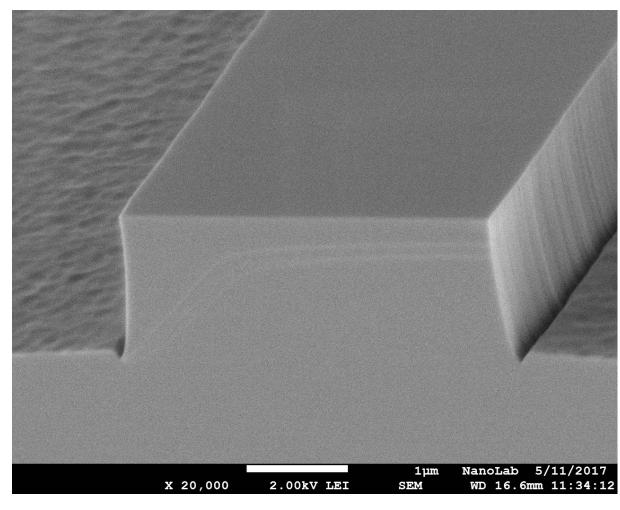
Development on metals underway: Plating samples (SP19) inspection; Metal on BCB adhesion test.



Task 4: DUV lithography and etching

- DUV lithography has been introduced to MPW SP20 (June 2017, milestone)
- Optimization of the subsequent etching process
 - Original recipe CH4-H2 optimized at Smart
 - New recipe CH4-H2-Cl2 tested at TU/e

Samples (InP	Recipes	Etch rate (nm/min)		
bars)		InP	SiNx	
#1 reference	CH4-H2 @60C	78	2.4	
#2 test	CH4-H2- Cl2 @60C	360	50	
#3 test	CH4-H2- Cl2 @200C	250	30	
#4 reference	CH4-H2 @60C	72	2	



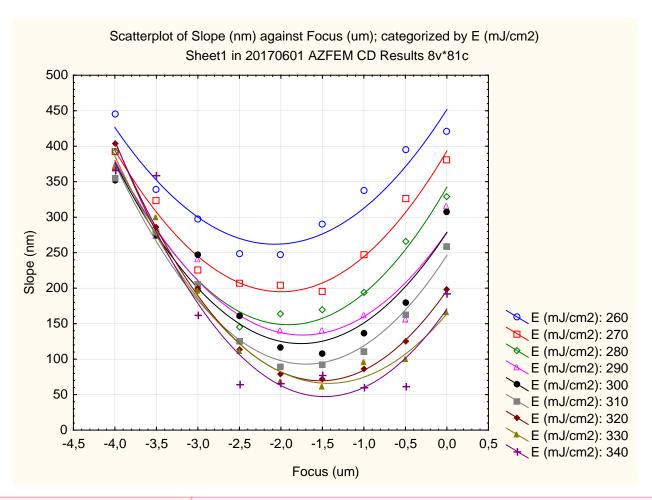
Task 4: DUV lithography and etching

NanoLab 5/10/2017 X 20,000 2.00kV LEI WD 12.0mm 15:54:21 SEM

CH4-H2-Cl2 @60C

CH4-H2-Cl2 @200C





Task 5: Stepper lithography integration

Equipment calibration and process development for AZ resist

Next period

- Al-MQW based modulators
 MQW ready (Dec 17) → etching, passivation (Jun 18) → joint MPW (Sep 18)
- In-diffusion integration
 Complete model of diffusion (Sep 17) → joint MPW (Dec 17) → transfer (Jun 18)
- Thick insulation and RF lines
 Material tests done (Oct 17) → joint MPW (Dec 17) → transfer (Jun 18)
- DUV lithography and etching
 CH4-H2 etch updated (Oct 17) → Cl2 etch ready (Mar 18)
- Stepper lithography integration
 MaN process ready (Sep 17) → Scanner-stepper test (Jan 18) → transfer (Sep 18)

