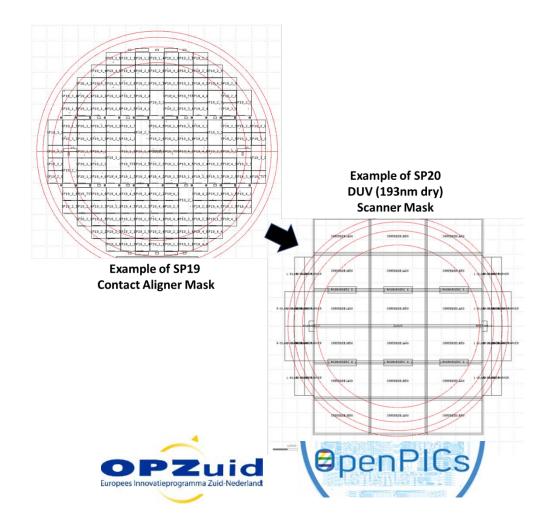
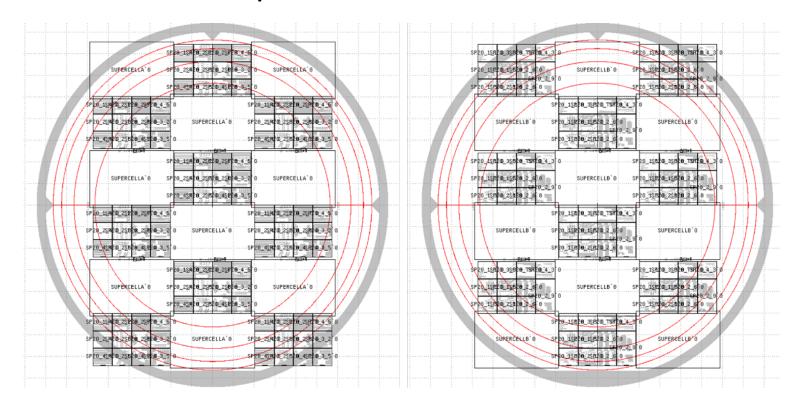


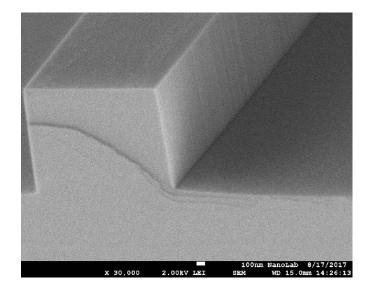
OUTLINE


- Process development
 - Scanner lithography
 - Etching development
 - Support for Zn diffusion experiments
- Photonic Design Kit (PDK) developments
- Summary


Scanner Lithography development (reported in WP4-M5.1)

For the DUV approach so-called super cells have been created, which fit 12 MPW cells of 4x4.6mm. A single supercell can be replicated 18 times on a 3 inch wafer.

Actual SP20 implementation


2 supercells with 12 dies each, being replicated 9 times

- Etching development
- A new CH4-H2 recipe was developed showing:
 - Etchrate: 71.7 nm/min
 - Side wall angle: 0.44°
 - Hard mask erosion: 2.1 nm/min

Recipe is now at validation stage.

- Support for Zn diffusion experiments
- 4 wafers were grown in our multi-reactor for Zn diffusion experiments

Layer	Material	Doping	d [nm]			
III-3	p-InGaAs	$1.5 \cdot 10^{19}$	300			
III-2		$1.0\cdot10^{18}$				
III-1	p-InP	low 10 ¹⁷	300			
II-2	n-InP	low 10 ¹⁶	200			
II-1	n-Q1.25	low 10 ¹⁶	500			
I-2	n-InP	low 10 ¹⁷	500			
I-1	n-InP	low 10 ¹⁸	500			
I-0		$1 - 4 \cdot 10^{18}$				

PDK DEVELOPMENT

- A new Design Manual has been released
 - Update of the performance data of BB
 - Inclusion of the new BB
 - Experimental phase
 - Validation phase
 - Design Rule Check (DRC) included

Independent InP Foundry

SMART Photonics Photonic IC design manual

Version V 1.0 August 1, 2017

SMART Photonics

in collaboration with
Photonic Integration Group
Research Institute COBRA
Eindhoven University of Technology

CONFIDENTIAL

FUTURE

F	FUTURE		MPW validation		MPW commercial		Tape-out						
		SP19	SP20	SP21	SP22	SP23	SP24	SP25	SP26	SP27	SP28	SP29	SP30
		Dec-16	Mar-17	Jun-17	Sep-17	Dec-17	Mar-18	Jun-18	Sep-18	Dec-18	Mar-19	Jun-19	Sep-19
Modulator			1st	сору				2nd			3rd		
	SI-substrate		Х										
	Plating	X											
	Effect MQW			X									
	Al-MQW							Х					
	CL-TWE										Х		
RF Line	conventional				1st					2nd			
	new planarization					to	be	determined					
SSC					х								
Prec. Filter	(ring, AWG, MZI)			1st			2nd			3rd			
	DBR	x EBL	EBL	DUV									
	DUV		X										
Low LW LD													
	DBR laser		1st			2nd			3rd				
	Triplex Hybrid				1st	Oct Lionix run	2nd	+Lionix run					
	High Q cavity laser									1st		2nd	
WP4 items	Zn diffusion				х								
	Thick insulation + RF				х								
	Improved etching						X						
Demo	both chips		71801						1 st				

SUMMARY

- Within WP4 several improvements have been achieved:
 - Scanner Lithography
 - Support for Zn diffusion experiments
 - Development of new etching recipes for improved waveguide profile

Release of a new Design Manual

